
CountESS
a user-friendly platform for 

analysing MAVE data

Nick Moore1 and Alan F Rubin1,2

1: The Walter and Eliza Institute of Medical Research, Parkville, VIC, Australia
2: The University of Melbourne, Parkville, VIC, Australia

Read metadata and 
barcode maps in

CSV / TSV & TXT format
Call variants using

inbuilt variant caller or 
minimap2

Graphical User Interface, 
little programming 

experience required!

Write your own plugin 
modules in Python

Read and collate FASTQ 
and FASTA sequence data 

efficiently.

Built on top of

and Python, and Apache 
Arrow, and Biobear.

Design a pipeline in the 
GUI, run from the 

command line on an HPC 
cluster

install with
pip install countess

on Linux / Windows / 
MacOS

Built-in support for SGE, 
VAMP-seq, LABEL-seq

and custom assays and 
methodologies

Save configurations as a 
simple, revision-control 

friendly .INI file

Open Source!

https://countess-project.github.io/
CountESS "portrait" logo © 2024 Sayeh Gorjifard, used with permission.

Getting Started with CountESS
CountESS is more like a toolbox than a single program: it can do 
all sorts of things, but that makes it a little tricky to work out how 
to get started. This tutorial attempts to walk you through some 
simplified examples to demonstrate how to solve common 
bioinformatics tasks with CountESS.

Demo Files
The countess-demo project at

https://github.com/CountESS-Project/countess-demo/

provides a collection of demonstration files for use in these 
examples. Demo files consist of randomly generated data. Any 
resemblance to organisms living or otherwise is coincidental.

You can download a ZIP of the files or clone the repository using:

git clone https://github.com/CountESS-Project/countess-demo/

Example 1: Reading & Counting Sequences
For this simplified example, we’ll load up two CSV files with DNA 
sequencing data, count the population of each variant at two 
time points and score the variants using the ratio of their counts.

Load this example up with countess_gui example_1.ini.

There are five nodes in this CountESS pipeline, each of which 
transforms the data and then passes it to the next node. 
CountESS can also perform operations in parallel, but for the 
moment we can understand each of these steps as happening 
sequentially.

1. Loading CSV files
Sequences are in the files sequences_1.csv and sequences_2.csv 
which just contain a sequence column with raw DNA sequences 
and a time column.

sequence,time
AGTTCGAGGACATGGTGAGT,1
GATGTCCTAAGGGTCGATTC,1
TTCAGTACCTAAACTATGTT,1
TTTATATTTCGAGTGAATGT,1
CAACGAGAGATGTAGGAGAA,1
GTAACAGGAGTCATGTTTCC,1

(etc)

Our first step just reads these two files in.

• Sequence data can also be loaded from other file formats 
such as FASTQ.

• CountESS can also read Gzipped CSV and FASTQ files, and 
this can be faster to read than plain files, depending on 
your platform. 

• With larger files, reads are limited to 100,000 rows when 
previewing. 

2. Grouping by Sequence
We now have a dataframe with all our raw sequences in it. Next 
we want to count how many times each sequence appears at 
each time point.

The Group By tool lets us specify some columns to index by. If no 
other operations are selected, it will count the number of rows 
corresponding to each index value, and put this into a column 
called “count”.

• The preview pane can be sorted by columns to get a better 
understanding of your data. 

• The “count” operation will count how many rows belong in 
the group. If your data already has “counts”, select “sum” on 
that column to sum the counts for each group. 

3. Pivoting by Time
We’ve now got separate counts for each sequence at each time 
point, but we want to compare counts for each sequence across 
the time points.

To do this, we use the Pivot Tool:

The distinct values of the “Pivot” column(s) are used to expand 
the data in the “Expand” column(s) into new columns.

In this case, we’re expanding the column count into two new 
columns, count__time_1 and count__time_2.

• If there are duplicate values in the index, the expanded 
numbers get summed. 

• If there are missing values, they default to zero. 
• CountESS only supports pivoting up to 200 output columns. 

4. Calculating Scores
Now we have pivoted the data, for each sequence we have 
counts at two different time points. We want to calculate scores 
from the counts by dividing one by the other:

The Python Code tool lets us write small expressions in Python 
and apply them to each row of the table. In this case we’re 
calculating a simplified score as the fraction of sequences which 
have survived from time 1 to time 2.

5. Saving Results
Now we have a score for each sequence, we need to write our 
data out somewhere. The CSV Save tool lets us save our output in 
a CSV file for easy use elsewhere.

The output ends up looking like:

sequence,count__time_1,count__time_2,score
AAAAATCCGTAGGGGTTGCC,35,25,0.7142857142857143
AAAACTTTGAAGTGGGTACG,19,16,0.8421052631578947
AAAAGAAGCTCTAGTATATT,96,71,0.7395833333333334
AAAATAGAACCGTGGCACCT,29,22,0.7586206896551724
AAACACTGGTTAGACCCAAG,88,65,0.7386363636363636

(etc)

• The “Text Preview” is just that, a preview. Nothing is written 
to the file until you click “Run”. 

Example 2: Translating Barcodes & Calling 
Variants
Load this example with countess_gui example_2.ini.

1. Translating Barcodes
Often, rather than direct sequencing, our sequencing files are full 
of “barcodes”, and we need to use a barcode map to translate to 
an actual sequence.

In this example, we’re working with a simple barcode map 
barcodes.csv, each row of which translates our random 20 base 
barcodes to various SNVs of a 147-base protein coding sequence.

barcode,sequence
ATTCCCGTAATCTACGATTA,ATGCTTTGTACGGGTGGTGCCCTGGCTTA
TCTATCTAGATCCGTCTCCGAGTCACGGTCGAATTTAGGTACTGCACTAT
CCTTTGAGGCGGGAAGGGCCACAAGGGCCGACCCTTGTCGGATAAAATTT
GCTAAGAGGAAGGTCTAG
AGTCACAACCAAACCATGGA,ATGCTTTGTACGGGTGGTGCCCTGGCTTA
TCTATCTAGATCCGTCTCCGAGTCACGGTCGAATTTAGGTACTGCACTAT
CCTTTGAGGCGGGAAGGGCCACAAGGGCCGACCCTTGTCGGATAAAATTT
GCTAAGAGGAAGGTCTAG
TTACGGTCTGCGTTGGAATC,ATGCTTTGTACGGGTGGTGCCCTGGCTTA
TCTATCTAGATCCGTCTCCGAGTCACGGTCGAATTTAGGTACTGCACTAT
CCTTTGAGGCGGGAAGGGCCACAAGGGCCGACCCTTGTCGGATAAAATTT
GCTAAGAGGAAGGTCTAG
AGGGCCGTGCCAAGTGCAGT,ATGCTTTGTACGGGTGGTGCCCTGGCTTA
TCTATCTAGATCCGTCTCCGAGTCACGGTCGAATTTAGGTACTGCACTAT
CCTTTGAGGCGGGAAGGACCACAAGGGCCGACCCTTGTCGGATAAAATTT
GCTAAGAGGAAGGTCTAG
TGTAGTGCCGTATTTGTGGC,ATGCTTTGTACGGGTGGTGCCCTGGCTTA
TCTATCTAGATCCGTCTCCGAGTCACGGTCGAATTTAGGTACTGCACTAT
CCTTTGAGGCAGGAAGGGCCACAAGGGCCGACCCTTGTCGGATAAAATTT
GCTAAGAGGAAGGTCTAG

(etc)

The first three barcodes map to the same sequence, the other 
two have SNVs but they are hard to spot! There are 1000 
barcodes in the file, about 1/4 of which map to unmodified 
sequences.

First, we modify our sequence reading and grouping steps to 
rename the sequence column to barcode, for clarity.

 

Second, we add a new node to read the barcode map using the 
CSV Loader:

2. Joining
Now we add in a Join tool, which takes two inputs and joins them.

• Note that while there were 1000 distinct barcodes, there are 
only 357 distinct sequences. Some barcodes represent 
duplicate variants. 

• By default both inputs are “required”, so this is like an inner 
join, but by toggling one or both flags you can perform a 
left, right or full join. 

3. Calling Variants
Working with long sequences is a bit unwieldy: it’d be handy to be 
able to process these in a more compact format. The Variant 
Translator plugin lets us compare a sequence to a reference 
sequence and extract DNA and Protein variants in HGVS format.

We add a Variant Translator to our project, and configure it with 
our known reference sequence:

ATGCTTTGTACGGGTGGTGCCCTGGCTTATCTATCTAGATCCGTCTCCGA
GTCACGGTCGAATTTAGGTACTGCACTATCCTTTGAGGCGGGAAGGGCCA
CAAGGGCCGACCCTTGTCGGATAAAATTTGCTAAGAGGAAGGTCTAG

and it calculates both DNA (variant) and Protein (protein) variant 
strings for each sequence in the dataframe.

Quite a lot of the DNA variants turn out to be equal to the 
reference sequence (g.=) and even more of the Protein variants 
turn out to be synonymous (p.=).

4. Multiple Outputs
CountESS nodes can have multiple outputs. From here, we 
perform the same pivot, score and write to CSV steps as before, 
but duplicated for both DNA and Protein variants.

 

More examples on the 
CountESS documentation …

https://countess-
project.github.io/
CountESS/


